Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available April 28, 2026
- 
            Background:Achieving optimal glycemic control for persons with diabetes remains difficult. Real-world continuous glucose monitoring (CGM) data can illuminate previously underrecognized glycemic fluctuations. We aimed to characterize glucose trajectories in individuals with Type 1 and Type 2 diabetes, and to examine how baseline glycemic control, CGM usage frequency, and regional differences shape these patterns. Methods:We linked Dexcom CGM data (2015–2020) with Veterans Health Administration electronic health records, identifying 892 Type 1 and 1716 Type 2 diabetes patients. Analyses focused on the first three years of CGM use, encompassing over 2.1 million glucose readings. We explored temporal trends in average daily glucose and time-in-range values. Results:Both Type 1 and Type 2 cohorts exhibited a gradual rise in mean daily glucose over time, although higher CGM usage frequency was associated with lower overall glucose or attenuated increases. Notable weekly patterns emerged: Sundays consistently showed the highest glucose values, whereas Wednesdays tended to have the lowest. Seasonally, glycemic control deteriorated from October to February and rebounded from April to August, with more pronounced fluctuations in the Northeast compared to the Southwest U.S. Conclusions:Our findings underscore the importance of recognizing day-of-week and seasonal glycemic variations in diabetes management. Tailoring interventions to account for these real-world fluctuations may enhance patient engagement, optimize glycemic control, and ultimately improve health outcomes.more » « lessFree, publicly-accessible full text available May 24, 2026
- 
            Two-dimensional (2D) transition metal carbides, nitrides and carbonitrides, known as MXenes, are of interest as electrocatalysts. Tungsten-based MXenes are predicted to have low overpotentials in the hydrogen evolution reaction but their synthesis has proven difficult due to the calculated instability of their hypothetical MAX precursors. In this study, we present a theory-guided synthesis of a tungsten-based MXene, W2TiC2Tx, derived from a non-MAX nanolaminated ternary carbide (W,Ti)4C4−y precursor by the selective etching of one of the covalently bonded tungsten layers. Our results indicate the importance of tungsten and titanium ordering, the presence of vacancy defects in the metal layers, and the lack of oxygen impurities in the carbon layers for the successful selective etching of the precursor. We confirm the atomistic out-of-plane ordering of tungsten and titanium using computational and experimental characterizations. The tungsten-rich basal plane endows W2TiC2Tx MXene with a high electrocatalytic hydrogen evolution reaction performance (∼144 mV overpotential at 10 mA cm−2). This study reports a tungsten-based MXene synthesized from a covalently bonded non-MAX precursor, adding to the synthetic strategies for 2D materials.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract We search for an optimal filter design for the estimation of stellar metallicity, based on synthetic photometry from Gaia XP spectra convolved with a series of filter-transmission curves defined by different central wavelengths and bandwidths. Unlike previous designs based solely on maximizing metallicity sensitivity, we find that the optimal solution provides a balance between the sensitivity and uncertainty of the spectra. With this optimal filter design, the best precision of metallicity estimates for relatively bright (G∼ 11.5) stars is excellent,σ[Fe/H]= 0.034 dex for FGK dwarf stars, superior to that obtained utilizing custom sensitivity-optimized filters (e.g., SkyMapperv). By selecting hundreds of high-probability member stars of the open cluster M67, our analysis reveals that the intrinsic photometric-metallicity scatter of these cluster members is only 0.036 dex, consistent with this level of precision. Our results clearly demonstrate that the internal precision of photometric-metallicity estimates can be extremely high, even providing the opportunity to perform chemical tagging for very large numbers of field stars in the Milky Way. This experiment shows that it is crucial to take into account uncertainty alongside the sensitivity when designing filters for measuring the stellar metallicity and other parameters.more » « less
- 
            Two-dimensional transition metal carbides, nitrides, and carbonitrides, known as MXenes, hold potential in electrocatalytic applications. Tungsten (W) based-MXenes are of particular interest as they are predicted to have low overpotentials in hydrogen evolution reaction (HER). However, incorporating W into the MXene structure has proven difficult due to the calculated instability of its hypothetical MAX precursors. In this study, we present a theory-guided synthesis of a W-containing MXene, W2TiC2Tx, derived from a non-MAX nanolaminated ternary carbide (W,Ti)4C4-y precursor by selective etching of one of the covalently bonded tungsten layers. Our results indicate the importance of W and Ti ordering and the presence of vacancy defects for the successful selective etching of the precursor. We confirm the atomistic out-of-plane ordering of W and Ti using density functional theory, Rietveld refinement, and electron microscopy methods. Additionally, the W-rich basal plane endows W2TiC2Tx MXene with a remarkable HER overpotential (~144 mV at 10 mA/cm2). This study adds a tungsten-containing MXene made from a covalently bonded non-MAX phase opening more ways to synthesize novel 2D materials.more » « less
- 
            Abstract Each year, underwater remotely operated vehicles (ROVs) collect thousands of hours of video of unexplored ocean habitats revealing a plethora of information regarding biodiversity on Earth. However, fully utilizing this information remains a challenge as proper annotations and analysis require trained scientists’ time, which is both limited and costly. To this end, we present a Dataset for Underwater Substrate and Invertebrate Analysis (DUSIA), a benchmark suite and growing large-scale dataset to train, validate, and test methods for temporally localizing four underwater substrates as well as temporally and spatially localizing 59 underwater invertebrate species. DUSIA currently includes over ten hours of footage across 25 videos captured in 1080p at 30 fps by an ROV following pre-planned transects across the ocean floor near the Channel Islands of California. Each video includes annotations indicating the start and end times of substrates across the video in addition to counts of species of interest. Some frames are annotated with precise bounding box locations for invertebrate species of interest, as seen in Fig. 1. To our knowledge, DUSIA is the first dataset of its kind for deep sea exploration, with video from a moving camera, that includes substrate annotations and invertebrate species that are present at significant depths where sunlight does not penetrate. Additionally, we present the novel context-driven object detector (CDD) where we use explicit substrate classification to influence an object detection network to simultaneously predict a substrate and species class influenced by that substrate. We also present a method for improving training on partially annotated bounding box frames. Finally, we offer a baseline method for automating the counting of invertebrate species of interest.more » « less
- 
            null (Ed.)Abstract. Livestock manure nitrogen (N) and phosphorus (P) play an importantrole in biogeochemical cycling. Accurate estimation of manure nutrient isimportant for assessing regional nutrient balance, greenhouse gas emission,and water environmental risk. Currently, spatially explicit manure nutrientdatasets over a century-long period are scarce in the United States (US).Here, we developed four datasets of annual animal manure N and P productionand application in the contiguous US at a 30 arcsec resolution overthe period of 1860–2017. The dataset combined multiple data sourcesincluding county-level inventory data as well as high-resolution livestockand crop maps. The total production of manure N and P increased from 1.4 Tg N yr−1 and 0.3 Tg P yr−1 in 1860 to 7.4 Tg N yr−1 and 2.3 Tg P yr−1 in 2017, respectively. The increasing manure nutrient productionwas associated with increased livestock numbers before the 1980s andenhanced livestock weights after the 1980s. The manure application amountwas primarily dominated by production, and its spatial pattern was impactedby the nutrient demand of crops. The intense-application region mainlyenlarged from the Midwest toward the southern US and became moreconcentrated in numerous hot spots after the 1980s. The South Atlantic–Gulf and Mid-Atlantic basins were exposed to high environmental risks due to theenrichment of manure nutrient production and application from the 1970s tothe period of 2000–2017. Our long-term manure N and P datasets providedetailed information for national and regional assessments of nutrientbudgets. Additionally, the datasets can serve as the input data forecosystem and hydrological models to examine biogeochemical cycles interrestrial and aquatic ecosystems. Datasets are available at https://doi.org/10.1594/PANGAEA.919937 (Bian etal., 2020).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
